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EXECUTIVE SUMMARY 
 
The objective of this project was to develop prototype technologies that can detect the 
outbreak of disease resulting from bioterrorism through the analysis of non-traditional 
data sources (biosurveillance).  There were six specific areas of focus for the IBM team’s 
effort: 

1. Develop methodologies for evaluating the usefulness of non-traditional data 
sources for biosurveillance 

2. Apply the above methodologies to a wide variety of data sources and identify the 
most promising 

3. Investigate detection algorithms that can identify early signs of disease outbreak 
in non-traditional data sources 

4. Develop methodologies to evaluate the detection algorithms with respect to 
timeliness and false alarms 

5. Develop technologies for protecting privacy of data while retaining value for 
detection algorithms 

6. Investigate site-based biosurveillance, i.e., monitoring a geographically-
constrained site, in more detail that would be possible in, say, a city-wide context. 

 
In addition, we worked with Greg Glass and his team at the Johns Hopkins School of 
Public Health.  The JHU team had three main focus areas: 

1. Evaluate the impact of air travel, a major source of moving large numbers of 
people long distances, quickly, on the dispersion of communicable agents. 

2. Evaluate the utility of selected strategies to identify increases in the numbers of 
human cases of disease (outbreaks) more rapidly than current means provide. 

3. Develop methods that could be used to identify permissive environmental 
conditions for outbreaks of zoonotic diseases in human populations. 

 
This report will give overview coverage for all of these areas, and give pointers to the 
included documents that explore the areas in greater depth.  The report will also include a 
listing of all other documentation for this project, including: PI meeting documents, site 
visit documents, quarterly reports, and a publication list. 
 
It should be noted that this project underwent substantial revision from the original 
statement of work, based on direction from the program manager.  In particular, we 
increased our effort for site-based biosurveillance and away from developing a large-scale 
surveillance system for city or regional contexts.

1
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IBM FOCUS AREAS 
 
Develop methodologies for evaluating the usefulness of non-traditional data sources 
for biosurveillance. 
 
Throughout the course of the program we have investigated alternatives for evaluating 
non-traditional data sources and their value for early warning of bio-terrorist attacks.  Our 
most comprehensive work was presented at the International Conference for Data Mining 
Workshop on Life Sciences Data Mining.  We used a number of different approaches to 
evaluate whether the sales of Over-The-Counter (OTC) medications can be useful for 
early warning.  
 
 
 
Apply the above methodologies to a wide variety of data sources and identify the 
most promising. 
 
Assessing the value of particular data sources was a major goal for this program.  We 
were able to positively evaluate sales of OTC medications, showing that it provided one 
week of lead time or more when compared to a gold standard data source such as 
physician office visits.  
 
 
In additional we gave evidence that certain site-based data sources had value for 
biosurveillance.  There are two site data sources which we consider most promising:  a 
survey of self-assessed health and phone calls to medically-related phone numbers.  
Absenteeism, web queries, cafeteria sales, and traffic data, though less promising, are 
worthy of further study.  Cough counting and utility usage appear to have less value for 
site surveillance.  
 
Investigate detection algorithms that can identify early signs of disease outbreak in 
non-traditional data sources. 
 
We investigated a number of outbreak detection methods for the biosurveillance 
application.  Subsequent work explored more powerful and sophisticated approaches based on time-
space clustering.  We extended earlier work to use more general shapes.  
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Develop methodologies to evaluate the detection algorithms with respect to 
timeliness and false alarms. 
 
We were one of the leaders in BIO-ALIRT in establishing approaches for algorithm 
evaluation, introducing the AMOC approach to the group.  We also pushed for an event-
based evaluation on real data for the 2003 evaluation.  
 
Develop technologies for protecting privacy of data while retaining value for 
detection algorithms. 
 
Protection of the privacy of individuals when their data is used for surveillance is of the 
utmost concern to our project.  We have explained our approach to privacy protection, which 
provides guarantees about the quality of the protection while still retaining as much value as 
possible for the data analysis. 
 
Investigate site-based biosurveillance, i.e., monitoring a geographically-constrained 
site, in more detail that would be possible in, say, a city-wide context. 
 
We focused much of our effort on thoroughly cataloging the data sources available at 
sites and examining them for utility in the biosurveillance task.  
 
JOHNS HOPKINS UNIVERSITY FOCUS AREAS 
 
Evaluate the impact of air travel, a major source of moving large numbers of people 
long distances, quickly, on the dispersion of communicable agents. 
 
We developed a capacitated-network linked, susceptible-exposed-infectious-recovered 
(SEIR) model.  This model was calibrated successfully against previously created 
simulations of the 1968 pandemic of influenza.  When provided with current (pre-
9/11/2001) air travel usage, the global pattern of influenza dispersion was dramatically 
altered with significant foreshortening of the dispersion.  Attempts to prevent further 
global spread by quarantine, following the identification of cases in a city, were likely to 
be unsuccessful.   
 
This model was then applied to a hypothetical release of smallpox virus, by using the 
same transportation data but applying patterns of disease progression for the smallpox 
virus.  These releases were considered both for travel patterns within the United States, as 
well as globally.  Simulations indicate that the implementation of air travel restrictions, if 
done rapidly can reduce the impact of smallpox spread.  However, they do not prevent its 
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spread to other parts of the country.  Thus, if an outbreak were to occur surveillance 
should be immediately initiated in other metropolitan areas, as well.  The extent of spread 
is highly dependent on the city in which the initial release occurs.  
 
Evaluate the utility of selected strategies to identify increases in the numbers of 
human cases of disease (outbreaks) more rapidly than current means provide. 
 
We examined methods incorporated both modeling and statistical analyses of reported 
symptoms of diseases.  The capacitated network SEIR model was applied to influenza-
like illness data from major metropolitan areas in the United States.  These models were 
used to compare the predicted onset and peak of influenza in the U.S. during the 1998-
1999, 1999-2000 and 2000-2001 influenza seasons with results monitored by various 
agencies, including the World Health Organization and the Centers for Disease Control 
and Prevention.  For nearly all the cities examined, the model anticipated the onset and 
peak of the influenza season 3-10 days prior to current monitoring methods.   
 
Spatial patterns of reported illnesses, within individual metropolitan areas, also may 
provide important contextual clues to the appearance of a disease outbreak, whether 
intentional or natural.  Statistical methods to detect unusual spatial patterns were applied 
to health related data for several locations within the U.S.  Their results were compared in 
a Delphi experiment, with the interpretation of expert infectious disease epidemiologists.  
At sites where data were abundant, these methods, such as Whittemore’s T statistic 
identified the same number of outbreaks as the expert group but identified them earlier 
than the experts – suggesting these programmable methods could be beneficial strategies 
for automated monitoring of health data streams.  
 
Develop methods that could be used to identify permissive environmental conditions 
for outbreaks of zoonotic diseases in human populations. 
 
We developed analytical methods that could be used to determine if environmental 
conditions were suitable for the natural emergence of zoonotic diseases (diseases carried 
by wildlife and transmitted to humans).  Environmental monitoring methods involved 
merging satellite imagery, with ground station data monitoring systems as a means to 
improve data quality.  Time series analyses of mosquito population data sets showed that 
currently gathered environmental data were of sufficient quality that these populations 
could be accurately forecasted with the implementation of new methods of data analyses.  
We created cross-correlation maps for the visualization of time-lagged modeling and 
applied empirical Bayesian estimation models to identify spatial scaling characteristics 
for the analyses.  These approaches were applied to identify where West Nile virus was 
likely to occur around the Chesapeake Bay region.  
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ABSTRACT 

 
Health activity monitoring (HAM) has received increasing 
attention due to the rapid advances of both hardware and 
software technologies and strong environmental and public 
health needs.  In this paper, we describe the architecture 
and implementation of the Epi-SPIRE prototype, which is 
a novel health activity monitoring system that generates 
alerts from environmental, behavioral, and public health 
data sources.   A model-based approach is used to develop 
disease and behavior models from multi-modal 
heterogeneous data sources.  Furthermore, a model-based 
indexing technique has been developed to speed up the 
data access and retrieval.   This system has been 
successfully applied to various genuine and simulated 
diseases outbreaks scenarios1. 

 

1. INTRODUCTION 
 
Recent advances in both hardware and software 
technologies enable real-time or near real-time monitoring 
and alert generation for environmental and public health 
related activities.  Environmental related activities include 
global climate change (such as global warming), 
deforestation, natural disaster, forest fire, and air pollution.  
Monitoring of disease outbreaks for public health purposes 
based on environmental epidemiology has been 
demonstrated for a number of vector-born diseases such as 
Hantavirus Pulmonary Syndrome (HPS), malaria, and 
Denge fever [1-5].  Recently, health activity monitoring 
(HAM) concept has also been applied to the early 

                                                 
1 This research is sponsored in part by the Defense Advanced Research 
Projects Agency and managed by Air Force Research Laboratory under 
contract F30602-01-C-0184 and NASA/IBM CAN NCC5-305.  
The views and conclusions contained in this document are those of the 
authors and should not be interpreted as necessarily representing the 
official policies, either expressed or implied of the Defense Advanced 
Research Projects Agency, Air Force Research Lab, NASA, or the 
United States Government. 

detection of subtle human behavior changes due to disease 
outbreak to provide advanced warnings before significant 
casualties registered from clinical sources. 

The alerts generated from HAM systems are triggered 
through the fusion of both traditional and non-traditional 
multi-modal heterogeneous data sources.  Traditional data 
includes data generated from clinical sources such as in-
patient and outpatient data.  Non-traditional data sources 
include those data collected from remote sensing 
(including satellite images), video/audio surveillance, and 
other data to enable the possibility of extrapolating human 
behavior.  

In this paper, we describe the architecture and 
implementation of the Epi-SPIRE prototype, which is a 
novel HAM system capable of generating early warning 
from monitoring environmental and public health 
activities.   A model-based approach is used to develop the 
disease and behavior models from multi-modal 
heterogeneous data sources.  Furthermore, a model-based 
indexing technique has been developed to speed up the 

data access and retrieval.   This system has been 
successfully applied to vector-born infectious disease such 
as HPS, pests in the agriculture area such as fire ants, and 
influenza.  For HPS, the advanced warning for high risk 
regions by using a combination of satellite images and 
digital elevation map (DEM) can be as much as 9 months 
[5]. In the case of influenza, preliminary results indicate 
that early warnings can be generated by Epi-SPIRE using 

 Event 

Phenomenon 
Structured  
(relational) Semi - 

structured 
(XML, HTML) 

Non - 
structured  
(Text, image,  
video, audio) 

raw 

feature 
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abstraction 
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Capture 

behavior 

 
Figure 1: Process of generation of multi-modal 
heterogeneous data sources. 
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heterogeneous non-traditional data sources earlier than 
that can be achieved by using only traditional clinical data 
sources, thus demonstrating the potential benefit of such a 
system for public health applications. 
 

2. PRELIMINARY ON HEALTH ACTIVITY 
MONITORING 

 

The multi-modal heterogeneous data sources collected by 
a HAM system can come from a wide variety of sources, 
including (1) sensors monitoring the environment either 
through in situ or remote sensing (such as satellites) to 
capture the events and phenomenon as they occur; (2) data 
already collected for other purposes, such as e-seminar, 
phone records, web log, newsgroup, sewage records; (3) 
data collected from clinical sources such as insurance 
claims, in-patient and outpatient data, lab tests, and 
Emergency Room records.   

The data sources capturing events and phenomenon 
related to environments and human behavior, as shown in 
Fig. 1, can be categorized as structured (parametric or 
relational), semi-structured (HTML or XML), and non-
structured (text, image, audio, and video).  The data can be 
potentially captured at various abstraction levels, including 
raw data (raw images or video), features extracted from 
the raw data (such as texture and spectral histogram from 

satellite images), semantic (road, houses), concepts (house 
surrounded by bushes), and metaphors.  

The main challenge in HAM is to be able to fuse multi-
modal heterogeneous information sources (based on 
models) at different abstraction levels, generate multiple 
hypothesis of the models for the events, phenomenon and 
behaviors, and test the validity of the hypothesis using the 
available data.  The end objective of such a system is to 
predict or detect an upcoming event using the model 
derived from the fused heterogeneous data sources. 

 
3. ENVIRONMENTS AND ARCHITECTURE 

 
The system environment of Epi-SPIRE is shown in Fig. 2.  
The Epi-SPIRE system uses (1) data collected from the 
natural environment (such as those collected by the 
satellites and weather stations), (2) data collected 
passively as a byproduct of human behavior (such as 
attendance at work or school, consumption records at 
cafeteria, sewage generation, web log and phone records), 
(3) data collected actively from probing the population 
that are being monitored, usually through periodic survey.  
In addition to the dynamic data that require real time 
processing, Epi-SPIRE also utilizes static data such as 
maps, digital elevation map, hydrology, and demographic 
information. 

The system architecture for Epi-SPIRE, which is based 
on the use of a content-based publisher/subscriber hub - 
Gryphon [6], is shown in Fig. 3.  All of the data sources 
are connected to the pub/sub hub as publisher so that the 
data (numeric message, text, audio, or video) from these 
sources can be routed through the hub to those subscribers 
that subscribe to these sources.  All of the detectors are 
attached to the system as subscribers as well as publishers, 
so that they can subscribe to a number of data sources as 
well as the output from other detectors based on the topics 
of the data sources.  

  Note that each of the detectors within the system (as 
shown in Fig. 3) may generate alerts based on the specific 
charter of the detector.  There is also system level alert 
generation that fuses the alerts generated from other 
detectors.  The system level alert generation uses alerts 

Humans
(Watson site as surrogate)

sewageCafeteriaAttendance
Outbound
Phone call
Web log

Clinical Data
(SDI)

Earth Observing
Satellite Images

DEM

Weather 
stations

Hydrology

EpiSPIRE
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Demographic
Info

survey

Figure 2: Epi-SPIRE environment. 
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generated by both passive and active detectors, as shown 
in Fig. 4.     
 

4. MODEL-BASED DATA FUSION AND 
DETECTION  

 
A number of modeling techniques have been developed in 
this system to model the spatio-temporal risk factor to 
certain infectious diseases (HPS, influenza, Denge fever, 
and anthrax).  A linear time-invariant model, Y = a1X1 + 
a2X2 + … . + anXn, has been used to model the HPS, where 
each Xi represents the data itself or derived 
attributes/features from the multi-modal information 
sources, while the coefficient ai represents the weights 
(relative contribution) of the attribute derived from the 
data.   More specifically, the risk assessment model for the 
risk to HPS 
associated with a 
location (x,y) is:  
R(x,y) = 0.443X1 + 

0.222X2 + 0.153X3 + 
0.183 X4, 

where X1, X2, and X3 
correspond to the 
pixel value of band 
4, 5 and 7 of Landsat 
Thematic Mapper  
image at location 
(x,y),  while X4 
corresponds to the 
elevation (in meters) 
from the 
corresponding DEM (digital elevation map).    A risk map 
based on this model for the south western US during the 
summer of 1992 is shown in Fig. 5.  The actual HPS 
outbreak took place in 1993 with more than 85% of the 
cases occur within those highest risk areas.    In addition to 
the linear model, finite state machine models have been 
successfully developed and applied to modeling the risk to 
fire ants (which are harmful to both crops and livestock of 
the southeast US), and Bayesian network models have 
been developed for other infectious diseases.   

The same model for data fusion can also be used for 
indexing to facilitate model-based information retrieval.  A 
model-based indexing technique, Onion [7], was 
developed for linear model based data fusion and retrieval 
and provide up to three order-of-magnitude speedups as 
compared to linear evaluation. 

The risk map generated above provides the baseline for 
anomaly detection – as we are usually only interested in 
unexplainable anomalies.  We have explored two general 
classes of model-based anomaly detectors (Fig. 3 and 4) 
that have applicability to site surveillance.  The first class, 
which we term differential detectors, is applicable in the 
case where there are two or more sites that have similar 

behaviors.  A differential detector raises an alarm when the 
deviation between sites becomes sufficiently large.  The 
second class of detectors is predictive, i.e., they predict 
“normal” site behavior and raise an alarm if a sufficiently 
large deviation from normal is detected. 

 
5. VALIDATION 

 
The Epi-SPIRE system has been validated in a genuine 
environment between the fall 2001 and summer of 2002 to 
monitor the behavioral changes of a population caused by 
the earliest stages of illness.  Examples of such behaviors 
include increased absenteeism, increased inquiries for 
medical information, changes in eating/drinking habits, 
increased coughing, increased traffic for leaving the 
building early, and increased sewage generation.  IBM T. 
J. Watson Research Center, which consists two sites - 
Yorktown and Hawthorne, and is located in Westchester 
County, NY (50 km north of New York City), is used in 
this case study.  The total population for the sites is 
approximately 2000.  All of the data collected below have 
been properly anonymized so that the privacy of the 
population being investigated is not violated.   
1) A weekly survey of self-reported health level was   

conducted from January 2002 through May 2002, 
during which an email-based survey of the population 
was run at the Watson site.  About 400 IBM 
employees volunteered to participate.  This survey 
had an excellent response rate:  92% of polled 
employees responded the same day, 73% by noon.   

2) The IBM Watson worksite requires the swiping of a 
badge in order to gain entry.  The badge number and 
time of entry are recorded in a database that is 
maintained for security purposes.  We have been 
receiving an anonymized version of this information 
since 12/2001. 

3) The IBM Watson site records, for billing purposes, all 
phone calls made outside the site.  The calling 
number, called number, time of call, and duration of 

 
Figure 6: car counting for monitoring traffic. 

 

 
Figure 5: Risk map for 
Hantavirus Pulmonary 
Syndrome during 1992. 
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call are recorded in a database.  A set of local 
medically related phone numbers was obtained from 
two main sources (scanned from yellow pages, 
internet directories).  From an anonymized version of 
these data it is possible to count the number of calls 
made from Watson to medically related numbers, as 
well as the number of extensions that were used to 
place these calls. 

4) The IBM Watson site records, for security purposes, 
all accesses to external websites at the firewall.  The 
source IP, destination IP, and date/time of access are 
recorded in a database.  Using an anonymized version 
of this database along with a manually generated list 
of medically related websites, it is possible to count 
the number of accesses to these medically related 
sites, as well as the number of computers from which 
these requests were made. 

5) Consumption of cafeteria food and beverages at 
Hawthorne Cafeteria (one of the two sites for the IBM 
T. J. Watson Research Center) are recorded 

electronically.   This cafeteria provides service to 
about 700 people. 

6) A number of other potential data sources have been 
considered and undergone some preliminary 
evaluation.  These include:  site utility usage, site 
sewage generation, cough counting, and car counting 
(cars entering or leaving site).   Specifically, the car 
counting is based on the use of the video captured 
from the webcam (shown in Fig. 6) in order to capture 
potential early departure traffic from a site.  The car 
counter is fairly accurate except during the night or 
when it is raining, as shown in Fig. 7 [8]. 

 
The alerts generated from these data sources are 

compared to the insurance claims from the Westchester 
County.   There is preliminary evidence that the warnings 
generated by some of the data sources (survey and phone 
in particular) lead the clinical sources. 

We have also evaluated the Epi-SPIRE anomaly 
detection mechanisms in a synthetic environment in which 
site-specific or regional outbreaks are simulated.  The 
results indicate that the pathogen release can be detected 
within 4 days for acceptable false alarm levels. 

 
6. SUMMARY 

 
In this paper, we describe the architecture and 
implementation of the Epi-SPIRE prototype, which is a 
novel health activity monitoring (HAM) system that 
generates alerts from environmental, behavioral, and 
public health data sources.   A model-based approach is 
used to develop the disease and behavior models from 
multi-modal heterogeneous data sources.  This system has 
been successfully validated in a number of scenarios 
involving infectious disease outbreak. 
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Abstract

Early and reliable detection of disease outbreaks is an
important problem for public health. Syndromic surveil-
lance systems use pre-diagnostic data sources to attempt to
improve the timeliness of outbreak detection. This paper de-
scribes a number of approaches to evaluating the utility of
data sources in a syndromic surveillance context. We show
that there is some evidence that sales of over-the-counter
medications have value for syndromic surveillance.

1 Introduction

Syndromic surveillance refers to the use of pre-
diagnostic health-related data for early detection of disease
outbreaks. With recent concern over the threat of bioter-
rorism, as well as the appearance of new disease threats
(e.g., SARS), syndromic surveillance is being looked to as
a means to improve the timeliness of public health surveil-
lance.

The development of a useful syndromic surveillance sys-
tem depends in part on the identification of data sources that
have value in predicting disease outbreaks. This paper will
focus on methods for assessing the value of data sources for
predicting disease outbreaks. We will examine a number of
different approaches that use retrospective analysis to eval-
uate data sources.

A frequently cited example of a data source that is pre-
sumed to be useful for syndromic surveillance is the sale
of over-the-counter (OTC) medications. We will apply our
evaluation approaches to a large, multi-year, multi-city data
set and show that there is some evidence that OTC medica-
tion sales may be useful for syndromic surveillance.

2 Background and Related Work

Syndromic surveillance (also referred to in the litera-
ture as early detection of disease outbreaks, pre-diagnosis
surveillance, non-traditional surveillance, enhanced surveil-
lance, non-traditional surveillance, and disease early warn-
ing systems) has received substantial interest recently, espe-
cially after Sept. 11, 2001 [3, 5, 9, 12, 13, 14, 15].

A number of studies have been devoted to investigating
various data sources, such as the text and the ICD-9 diag-
nosis code of the chief complaints from emergency depart-
ment [1, 2, 6, 11], 911 calls [4], and over-the-counter (OTC)
drug sales [8].

There are at least three different classes of approaches
to evaluating the utility of a data sources for syndromic
surveillance. The first approach is based on the measuring
the correlation between a target data source and a gold stan-
dard (diagnostic) data source [16]. A second approach is to
use the target data source to better predict values in the gold
standard data source. A third option is to identify “events”
(i.e., disease outbreaks) in a gold standard data source, and
assess the timeliness of alarms produced by a detection al-
gorithm operating on the target data source. The tradeoff
between timeliness and false alarms can be assessed using
the AMOC approach [7].

3 Data

There are two data sets that will be used in this study.
The first, which we will call OTC, is a weekly summary
of unit sales of upper respiratory over-the-counter medica-
tion sales for ten cities (Baltimore/Washington, Charlotte,
Chicago, Dallas, Milwaukee, New York, Norfolk, Orlando,
Pittsburgh, and Seattle) for a three-year period (2000-2002).
The first data point is for the week ending on 1/9/2000, and
the last data point is for the week ending 12/29/2002. For
each city, sales are reported in eight categories: four types
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(Cold, Allergy, Cough, and Sinus), and two target groups
for each type (Adult and Pediatric).

The second data set, which we will call CL, consists of
anonymized medical insurance claims records. The records
are from the same ten cities as for OTC, and cover the
same three-year period. Each record consists of a unique
(anonymized) patient identifier, a date of service, up to four
ICD-9 (diagnosis) codes, and a city name. There are a to-
tal of about 22.5 million records. The ICD-9 codes were
chosen by the data provider, Surveillance Data, Inc., to be
relevant to upper respiratory infections. The number of in-
surance claims were aggregated by city to weekly totals
aligned with the OTC data.

For the purposes of this study, the OTC data set is the tar-
get data source, i.e., OTC will be assessed for value in syn-
dromic surveillance. CL is the gold standard data source, as
it contains diagnostic information about actual disease.

4 Approaches

4.1 Lead-Lag Correlation Analysis

One approach to evaluating a data source for syndromic
surveillance is to conduct a lead-lag correlation analysis on
the data source with respect to a gold standard data source.
This consists of computing the correlation between the two
time series for a range of lead-lag times, and identifying the
lead-lag time at which the correlation is maximized. It can
be useful to remove trends before analyzing.

Although a correlation analysis can give a global view of
the lead time of a target data source, syndromic surveillance
is typically more interested in the lead time prior to increas-
ing levels of disease. This suggests an alternative approach
where a correlation analysis is performed on a number of
shorter time segments that contain the initial stages of dis-
ease outbreaks.

In Section 5.1 we will apply this method to the data sets
described in Section 3, and assess the value of OTC data for
syndromic surveillance.

4.2 Regression Test of Predictive Ability

This section describes another approach to evaluating the
usefulness of a target data source by posing it as a predic-
tion problem. More specifically, we are interested in pre-
dicting certain quantities associated with the gold standard
data source, and want to see whether by including the target
data, we are able to make better predictions.

This approach can be generally regarded as time-series
forecasting. If we can forecast a quantity A more accurately
using a quantity B under a certain metric, then we say that
B contains useful information for predicting A.

We now give a general description of this approach. As-
sume that the quantity of interests is presented sequentially
as a time-series

{Y } = {· · · , Y0, Y1, · · · , Yt, · · ·}.

We want to predict the future values of this time-series
based on some side-information (which may includes the
historical values of Y we observed so-far), represented as
another time-series of vectors:

{X} = {· · · ,X0,X1, · · · ,Xt, · · ·}.

Each Yt is a real-valued number, observed at time t, which
we are interested in. Each Xt is a real-vector, which en-
codes all of the side information that we hope are useful for
predicting the {Y } series.

To this end, we assume that at each time t, based on
the current side-information Xt, we would like to predict
Yt+f , which is the value of the Y series f -steps in the future
(where f > 0 is an integer). We assume that the predictor
pf (Xt) has a linear form as

Yt+f ≈ pf (Xt) = w
T
f Xt,

where wf is a weight vector (parameter of our model) that
characterizes the predictor pf . The parameter wf can be
estimated from the data (as we will describe later).

Given a predictor, represented as a weight vector w, we
can measure its quality using a certain figure of merit. In
this study, we employ the commonly used least-squares er-
ror criterion, defined as

Rf (w, [T1, T2]) =
1

T2 − T1 + 1

T2
∑

t=T1

(wT
Xt − Yt+f )2.

The number Rf (w, [T1, T2]) measures in the interval
[T1, T2], how well we can predict from X the sequence Y
f -steps in advance with the weight vector w.

The weight vector can be estimated from the historical
data using least-squares regression:

ŵf,T = arg min
w

T−f
∑

t=1

(wT
Xt − Yt+f )2. (1)

Now assume that we observe the sequences X and Y ,
up to some point T . To check how useful is X for pre-
dicting Y , we divide the time period into K consecutive
blocks (for simplicity, assume that T is divisible by K):
Ij = [Tj , Tj+1] for j = 0, . . . , K − 1, where Tj = jT/K.
Now we can use a single number

rf (X, Y ) =
1

K

K−1
∑

j=1

Rf (ŵf,Tj
, [Tj , Tj+1]) (2)
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to measure the usefulness of X for predicting Y (f -steps in
the future). That is, we train a predictor ŵf,Tj

using least
squares regression (1) with data observed up to jT0, and
then test on data from jT0 to Tj+1, for j = 0, . . . , K − 1,
and then average the results. The smaller rf (X, Y ) is, the
more useful X is for predicting Y . Therefore using (2), we
can compare the usefulness of different side informations X

and X
′.

In Section 5.2, we compute the corresponding rf (X, Y )
numbers with and without including the OTC data in the
side information X. Our results suggest the usefulness of
the OTC data in public health surveillance.

4.3 Detection-Based Approaches

For the detection-based approaches we assume that dis-
ease outbreak events are labeled in the gold standard data
set, and an outbreak detection algorithm operates on either
the the target data set or the gold standard data set. Using
the AMOC approach, we are able to assess the lead time
provided by the target data source over a range of practical
false alarm rates.

4.3.1 Supervised Algorithm for Outbreak detection in
OTC data

The supervised outbreak detection algorithm utilized the
previously supplied data in order to determine various as-
pects of the algorithm. The supervised algorithm required a
number of components in order to perform the detection:

(1) Determination of features to be used, and the proper
way to combine channels.

(2) Creation of streams of anomalies.
(3) Conversion of the anomaly streams into the alarm

level using the information from (1).
This supervision was done in two forms:
(1) Feature Selection: Since multiple channels of infor-

mation were available, which channels provided the great-
est level of connection between the channels and actual out-
breaks?

(2) Combination of Multiple Channels: How do we com-
bine the signals from multiple channels in order to create
one integrated alarm level which was most effective for de-
tecting the outbreak?

In order to perform feature selection, we used the same
OTC data set (provided by SDI) as described in the other
sections. The first step was to determine which of the
channels were most discriminatory for the purpose of dis-
tinguishing the biological outbreak from the background
noise.

Let us assume that for each site i, the value indicating
the channel specific information (absentee behavior, phone
calls, pharmacy buying behavior) at time t is denoted by

y(i, t). The first step was to convert the data into statistical
deviation levels which could be compared across different
features. Thus, each stream of data was converted into a
statistical stream of numbers indicating the deviation level
with respect to the prior window of behavior of width W .
The statistical deviation value for a given stream i at time
t was denoted by z(i, t). The value of z(i, t) was found by
first fitting the prior window of with W with the polyno-
mial function f(t). The deviation value at time t0 was then
defined as follows:

s(i) =

√

√

√

√

t0
∑

t=t0−W

(f(t) − y(i, t))2/(W − 1) (3)

The value of W used was based on the last 16 reports. This
statistical deviation is also referred to as the z-number. This
value provides an idea of how far the stream of data devi-
ates from the normal behavior and gives an intuitive under-
standing of the level of anomaly at a given tick. Then, the
statistical deviation z(i, t0) at time t0 is denoted by:

z(i, t0) = (f(t0) − y(i, t0))/s(i) (4)

These alarm values could be used in order to determine
the value of each channel in the training data. A partic-
ular channel was found to be useful when this value was
found to be larger than a pre-defined threshold of 1.5. For
example, by using this technique we were able to eliminate
the allergy channel for the purpose of detection of the flu
infections. For example, this behavior was illustrated by
the allergy channel in the OTC training data. We have also
illustrated the AMOC curve for the allergy channel in the
same figure. We note that the AMOC curve for the allergy
channel was particularly poor, because it seemed to be un-
correlated to the seasonal outbreaks in the data.

Once these features were selected, they could be used on
the test data for computing the statistical deviation values
using the same methodology as discussed above. Thus, a
separate signal was obtained from stream. The next step
was to combine the deviation values from the different sites
and channels to create one composite signal. A supervised
training process was utilized to determine the optimal func-
tional form for the test data. This was achieved my find-
ing the composition which maximized the area under the
AMOC curve.

Once each channel had been converted into a single com-
posite signal, they need to be combined to create a combi-
nation signature. For example, let q1(t), q2(t) and q3(t) be
the signatures obtained from three different channels. The
combination signature was defined as the expression:

C(t) = c1 · q1(t) + c2 · q2(t) + c3 · q3(t) (5)

Here c1, c2 and c3 were coefficients which were also deter-
mined by minimizing the latency of detection on the train-
ing data. As a normalization condition, it is assumed that
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the coefficients satisfy the following condition for the con-
stant C ′:

c12 + c22 + c32 = C ′ (6)

It is necessary to use the above condition for scaling pur-
poses. In order to determine the optimal alarm we found
values of c1, c2, and c3, which optimized the area under the
AMOC curve. This provides the combination signature.

4.3.2 Modified Holt-Winters forecaster

One of the unsupervised detectors used was a modified
Holt-Winter forecaster [10]. The forecaster generate a z-
value for each tick of a data channel, representing the devi-
ation of observed data from the predicted one. A z-value is
computed as follows:

z = (∆ − µ)/σ,

where ∆ is the difference between observed and predicted
data, and µ and σ are the mean and standard deviation, re-
spectively, of these ∆ differences in the past.

A Holt-Winters forecaster assumes that a time series,
X1, · · · , XN , can be modeled in terms of three key compo-
nents: the average XN , the trend TN and the daily season-
ality factors FN−D+1, · · · , FN , where D is the number of
days in the week for which there are observed data. The
average is the exponentially smoothed level value of all the
time series values. The trend is the exponentially smoothed
slope of all the N time series values. The daily seasonal-
ity factors are exponentially smoothed values reflecting the
deviation from linearity attributable to the different days of
the week. The seasonality factors can have either a multi-
plicative or additive effect. In our implementation, we chose
the additive variant. A Holt-Winters forecaster attempts to
accurately capture these three key components of a time se-
ries. It can deal with special events, such as holidays or
special days where data are missing.

4.3.3 Forecasting based on Multi-channel Regression

A simple prediction strategy that can combine single and
multi-channel prediction is to set up the problem as a linear
regression. As usual, the deviation of the actual value from
the predicted value as a measure of abnormality. We set up
a system of linear equations as shown below.

Let the observation stream of a single channel from
among the multiple OTC sales channels be [y1, . . . , yM ].
Consider using the past J observations to derive the regres-
sion parameters while using the past K samples for actually
predicting the K + 1th observation. The number of vari-

ables to be estimated from the past J samples is K.
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(7)
or using matrix notation:

Y = AyW, (8)

With this overdetermined system of equations (J >K) we
then calculate the least squares fit to this as shown in Eq 9:

W = (At
yAy)−1At

yY (9)

Assuming linear independence among columns of ma-
trix A, AtA is non singular and the generalized in-
verse (AtA)−1 exists. We calculate the weight vector
W after every update. Thus for each observation yM

we calculate the prediction aW , a being a row vector
[yM−1yM−2−1 . . . yM−J−1]. If the residual between the
actual value and the predicted value is positive we use this
difference as a measure of abnormality and probability of
an outbreak. Equation 7 can be extended to make the pre-
diction based on multiple channels. For example the matrix
A can be created by combining multiple channels. Equation
10 shows past samples from two channels [y1, . . . , yM ] and
[x1, . . . , xM ] being used to predict the current observation
of channel Y.

Y = [AyAx]

[

Wy

Wx

]

(10)

Using the above formulation we can predict the current
value of sales of any of the OTC channel based on values of
sales in the same channel as well as based on values of sales
in additional channels.

5 Experiments

5.1 Lead-Lag Correlation Analysis of OTC Data

The lead-lag correlation analysis approach requires us,
for each city, to compute the correlations corresponding to
various possible lead-lag times. In Figure 5.1, we examine
offsets ranging from five weeks prior to five weeks after.
The ten solid lines are the correlation values for each of the
ten cities. The dashed line is the mean of those values. The
peak correlation is between one and two weeks leading, i.e.,
OTC leading CL by one to two weeks. If a quadratic is fitted
to the dashed line, the maximum is at 1.7 weeks.

The provides evidence, albeit somewhat weak, that OTC
leads CL and may have value for syndromic surveillance.
Clearly there is a wide discrepancy on the correlation be-
tween OTC and CL across the different cities, and this needs
further investigation.
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Figure 1. Lead-Lag correlation analysis exper-
iment

5.2 Regression Test of the Predicative Value of
OTC

We study the usefulness of OTC for predicting insurance
claims using the approach described in Section 4.2. Since
the OTC data are weekly based, we shall form the time se-
ries on a weekly basis. In particular, we convert the insur-
ance data into weekly data aligned with the OTC data.

In this experiment, we consider different cities sepa-
rately. That is, we do not consider possible inter-city cor-
relations. For each city, we let OTCt be the total number
of OTC sales in week t, and CLt be the number of insur-
ance claims in week t. Since in public health surveillance,
we are mostly interested in sudden outbreaks of diseases,
we are interested in the log-ratio of the number of insur-
ance claims in consecutive weeks. That is, at week t, the Y
variable is given by

Yt = log2(CLt/CLt−1).

One may also use other quantities, such as whether the in-
surance claims next week is higher than this week by a cer-
tain amount (or whether Yt is larger than some threshold).

We consider a few possible side information X, which
we list below.

• X
1: Using constant side information: X

1
t ≡ [1]. This

leads to a predicator that predict Yt using its historic
mean.

• X
CL: In addition to the above, we also include his-

torical observations of the insurance claim data itself
(the log ratio of the current number of claims over

the claims of the previous week) as side-information:
X

CL
t = [Yt, 1].

• X
OTC
t : We include the constant one and the OTC data

into the side-information:

X
OTC
t = [log2(OTCt/OTCt−1), 1].

• X
CL−OTC
t : We include all of the above quantities into

the side-information:

X
CL−OTC
t = [log2(OTCt/OTCt−1), Yt, 1].

Since this framework is quite flexible, various other con-
figurations can also be studied. For our purpose, we are able
to make interesting observations from this particular config-
uration. Variations will lead to similar results.

Applying the notation in Section 4.2, for each city, we
divide the time series into K = 20 blocks, and compute the
rf (X, Y ) number in (2) for f = 1, 2 and each side informa-
tion listed above. We then average the results over the ten
cities, and report the averaged numbers in Table 1. From
the table, we can see that the OTC data has a small predica-
tive power for the insurance claims data CL. One may also
do an experiment in the reverse order (that is, use histori-
cal CL data to predict the future OTC sales). In this case,
for f = 1, the predictive performance for OTC sales, mea-
sured by the rf value, degrades from 0.0217 (without CL
in the side-information) to 0.0221 (with historical CL data
in the side-information). Therefore these experiments pro-
vide some evidence suggesting that OTC changes precede
CL changes.

X
1

X
CL

X
OTC

X
CL−OTC

f = 1 0.0287 0.0265 0.0285 0.0261
f = 2 0.0287 0.0291 0.0280 0.0287

Table 1. Averaged rf (X, Y ) numbers over ten
cities

Although effects shown in Table 1 are relatively small,
we believe they are still indicative statistically. Since we
average our results over ten cities, we may also check the
variation over different cities. In particular, in seven out
of ten cities, r1(X

OTC , Y ) is smaller than r1(X
1, Y ); also

in seven out of ten cities, r2(X
OTC , Y ) is smaller than

r2(X
1, Y ). This comparison is consistent with results in

Table 1, and justifies from a slightly different point of view
that statistically, the OTC data is (weakly) useful for pre-
dicting future insurance claims.
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Figure 2. The AMOC curves generated by the Super-
vised method illustrate that various OTC categories are
more timely than claims.

5.3 Results From Detection-Based Approaches

5.3.1 Supervised Method

Once the features have been selected, and the proper way
for construction of the combination signature was deter-
mined, the actual alarm level construction on the data was
straightforward. The deviation values for the data were
computed in an exactly identical way to the training data,
and the combination was created to output the correspond-
ing alarm levels at each tick. In Figure 5.3.1, we have il-
lustrated the behavior of the detection algorithms. Once
interesting observation was that the OTC data was always
more effective than the claims data. In fact, in most cases,
the OTC data acted as a “leading indicator” over the claims
data. It is also interesting to note that the adult and pediatric
data illustrated differential behavior in terms of the speed
and quality of the detection. An example of this is illus-
trated in Figure 5.3.1.

5.3.2 Modified Holt-Winters forecaster

Even though the OTC data were weekly data, the detector
treated them as daily data and assumed that there were 3
days in a week. It used the past 6 OTC data points to predict
the next OTC sale.

While there was some variability across different cate-
gories of OTC medication sales, over a wide range of false
alarm rates the Holt-Winters forecaster showed a two week
lead time for OTC over Claims. Sinus medication sales
were observed to have the best lead times overall.
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Figure 3. The AMOC curves generated by the Supervised
Method illustrate that there is differentiation between Adult
and Pediatric cough medication sales.

5.3.3 Forecasting based on Multi-channel Regression

Using the OTC data we experimented with different values
of J and K (see Section 4.3.3 for single and multichannel
prediction based outbreak detection. Based on our experi-
ments we found that sales of adult drugs were more infor-
mative about the outbreakss and had a lead time of between
2 and 3 weeks over claims. We also found encouraging em-
pirical evidence that the use of multiple channels resulted in
a better lead time for predicting outbreaks over single chan-
nel prediction. Figure 4 shows the AMOC curve using the
adult cold channel for predicting outbreaks. It also shows
the benefit of using adult cold and adult cough to predict
adult cold sales and use the deviation to detect outbreaks al-
though this benefit is evident only for small values of false
alarms as seen in the AMOC curve

6 Conclusions and Future Work

We have shown a number of different approaches to as-
sessing the value of a data source for syndromic surveil-
lance, and evaluated over-the-counter medication sales us-
ing these approaches. The appears to be evidence from each
of these approaches that OTC medication sales are a leading
indicator for disease outbreaks.

There are a number of limitations in this study. The data
sets were aggregated weekly, which reduces the precision
regarding estimates of the timeliness of OTC. This type of
study should be repeated with daily data. The detection-
based experiments identified only those outbreaks that oc-
curred at the beginning of the seasonal rise in respiratory
disease. A more careful study could examine finer grain
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Figure 4. The Adult Cold sales were found to be the
best indicator for the outbreaks with J = 15, K = 2 and
J = 20, K = 1 respectively for single channel and multi-
channel prediction. The Adult Cold and Cough sales were
used in the two channel prediction.

disease outbreaks, preferably those that have been studied
and verified by public health. This study was retrospec-
tive, looking only at historical data. A prospective study,
using the target data source to predict disease outbreak in
real time, would provide greater confidence in the conclu-
sions in this paper.
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